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Introduction

The number of protein structures available in the Protein
Data Bank[1] has become significant and it is expected to
increase rapidly in coming years.[2] Routine comparative
analysis of protein structures is thus becoming indispensa-
ble for transforming the information inherent in these struc-
tures into relational information that can be more useful for
predicting and classifying protein folds,[3] deriving evolu-
tionary relationships,[4] or modeling of proteins by homol-
ogy,[5] among many other aspects.

Three-dimensional comparison of protein structures in-
volves finding the optimum superposition. Over the past few
years, a large variety of strategies has been developed to
obtain relevant protein-structure superpositions[6-23] and
databases of protein-structure superpositions are now directly

available from the web.[24-28] However, there are still im-
portant ambiguities in defining and characterizing the opti-
mum superposition between protein structures.[29,30] On
one hand, because the optimum superposition depends on
the particular measure used to quantify the three-dimensional
similarity between proteins, each technique will produce an
essentially different optimum superposition for the same pair
of protein structures.[24,29] On the other hand, depending
on the particular topological characteristics of some protein
structures, multiple superposition solutions may be identi-
fied and hence even the existence of a unique optimum
superposition can be questioned.[29,30]

In cases where multiple superposition solutions may ex-
ist, the relevance of selecting one of the superpositions as
the optimum structural superposition goes beyond the struc-
tural level. It will ultimately have implications in all post-
superposition analyses, both at a structural level (analysis
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of protein domain movements, for example) and at a sequence
level (construction of structure-based sequence alignments,
for example). Therefore, the selection of the optimum
superposition among the different superposition solutions is
an important issue. At a sequence level, the normal criteria
used are either the maximum number of residues aligned or
the minimum root mean square deviation (rmsd) of the resi-
dues aligned in the sequence alignments obtained from the
different structural superpositions. However, as stated previ-
ously,[30] the use of these criteria is ambiguous as it is not
clear, for instance, whether alignment of M residues to m Å
rmsd is more significant than aligning N (N>M) residues to n
(n>m) Å rmsd. Alternatively, one could try to eliminate am-
biguities at the sequence level by deriving a consensus
superposition at the structural level that will ultimately lead
to a consensus sequence alignment.

This work aims at presenting the use of a Gaussian-based
approach to protein-structure similarity as a strategy for de-
riving a consensus optimum superposition when multiple
superposition solutions exist. A Gaussian representation of a
protein structure provides a fuzzier means to define the posi-
tions of atoms in space and, thus, it is in principle more suit-
able for obtaining relevant superpositions and to avoid being
trapped in marginal superpositions due to the locality of the
protein-structure representation. Moreover, the degree of
fuzzyness induced by a Gaussian representation can be con-
trolled by using different Gaussian descriptions and this will
also have implications in the optimum superposition and its
uniqueness. The performance of the present Gaussian-based
approach to derive a consensus optimum protein-structure
superposition is illustrated in three pairs of proteins showing
distinct topological characteristics.

Methodology

A program for Gaussian-based Alignment of Protein Struc-
tures, GAPS, has been developed. GAPS is a modified ver-
sion of the MIMIC program for obtaining ligand superposi-
tions,[31] which has been recently adapted to protein
superpositions.[32] In GAPS, every atom i in the protein is
represented by a Gaussian function, gi, centered at the atom
position, Ri, as

gi (r)  =  αi · exp(–βi |r–Ri|
2) (1)

where the coefficient, αi, and the exponent, βi, determine the
value of its maximum height at the origin and its decay, re-
spectively. A Gaussian-based representation of the struc-
ture of a protein A, PA, is then defined as

PA(r) = Σ gi(r) (2)
i∈A

It has been shown that the regular features of protein sec-
ondary structure such as α-helix and β-sheet are clearly de-

fined by the trace of the protein Cα carbons.[33] Therefore,
in order to speed up similarity calculations, only Cα carbons
were considered in the present study.

Once a Gaussian representation of the protein structure is
defined, the structural similarity between two proteins A and
B, SAB, is assessed by evaluating the overlap integral, ZAB,
between their respective representations, PA and PB, as

ZAB(t,θ) = ∫ PA (r) PB (r) dr (3)

which can be then normalized using a cosine-like index

ZAB(t,θ)
 SAB(t,θ) =  (4)

(ZAA × ZBB)
1/2

The values of SAB in eq. (4) range from 0 to 1. A value of
1 is achieved only in the limiting case of identity. Any dis-
similarity between the two proteins will be reflected in a value
smaller than 1.

Exploration of the structural similarity between a pair of
proteins is performed using a systematic spherical search.[31]
Basically, one of the proteins is kept fixed (the reference pro-
tein) while the other protein (the target protein) is systemati-
cally placed in a number of unique starting orientations about
the reference protein. Then, from each starting orientation
the structural similarity between the two proteins is optimized
in all translational (t) and rotational (θ) degrees of freedom
using common gradient-seeking techniques. This procedure
ensures a wide and uniformly distributed exploration of the
similarity landscape defined by the structural characteristics
of the two proteins. The sampling of the search depends on
the rotational step of the sphere used to define the starting
orientations.

Furthermore, note that protein-structure similarities as
computed from eq. (4) depend on the parameters of the
Gaussian functions defined by eq. (1). This means that for a
given maximum height, αi, different decays, βi, will lead to
different values of structural similarity. On the one side, for
very small βi values (which could be associated to a low-
resolution description of protein structures) every protein
structure would look almost alike, whereas on the other side,
very large βi values (which could be associated to a high-
resolution description of protein structures) would result in
no overlap at all between the structural representations and,
thus, every protein structure would be essentially unique. In
between these two limiting cases there is a long range of
possibilities and, ultimately, β i values could be user-
customizable. In the present study, the coefficients αi were
defined by αi=0.4798*Zi

3.1027, where Zi is the atomic number
of atom i.[34] Once αi is defined, the exponent βi in eq. (1)
can be set to give “practically null” values of gi(R) at radius
R from the atom centers.[35] Throughout the work, Gaussian
representations vanishing at 1, 2, 5, and 10 Å will be referred
as G1, G2, G5, and G10, respectively.

Throughout this study, in order to examine the connec-
tions between alignment solutions from different Gaussian
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representations the following procedure was used. Initially, a
G1 representation was selected. Due to the locality of a G1
representation, a large number of local similarity maxima
exist. Therefore, to ensure an extensive exploration of the
similarity function defined by the topological characteristics
of the two protein structures under study, a rotational step of
15 degrees (6384 starting orientations) was applied during

solutions not leading to the consensus superposition
solutions leading to the consensus superposition

0.00 0.12   Sab(G1)

0.03 0.29   Sab(G2)

0.31 0.77   Sab(G5)

0.65 0.95   Sab(G10)

the systematic spherical search. Then, each superposition
solution i  obtained using a G1 representation, denoted as
(i ,G1), was systematically reoptimized using the other
Gaussian-based protein-structure representations. Thus, the
original (i,G1) superposition solution converged to a (j,G2)
superposition solution, which then evolved to a (m,G5)
superposition solution and finally to a (n,G10) superposition

Figure 1 Connectivity be-
tween the superposition solu-
tions obtained from each
Gaussian-based representa-
tion for the {1GUH,1GSS}
pair of proteins (see text).
Each parallel coordinate rep-
resents the range of similar-
ity values (Sab in eq. (4)) as-
signed to the superposition
solutions obtained from each
Gaussian-based representa-
tion (G1, G2, G5, and G10)
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solution. The increase in smoothness of the Gaussian repre-
sentation from G1 to G10 leads to a significant reduction in
the number of superposition solutions, several of them con-
verging to a single superposition solution at every step of the
procedure. Parallel coordinates were used to represent the
connectivity between superposition solutions using different
Gaussian representations.

Finally, in order to assess the significance of the
superposition solutions obtained with GAPS, results were
compared to the superposition solutions produced by three
other protein-structure similarity programs publicly available
from the web, namely, GA_FIT,[15] TOP,[19] and
ALIGN[21]. Original default parameters were always used.
Due to the stochastic nature of the genetic algorithm used by
GA_FIT, 10 runs were always performed. In addition, com-
parison with structural superpositions extracted from the
FSSP[24] database is also included. In all cases, the degree
of agreement between the final three-dimensional orienta-

tions of the target protein with respect to the reference pro-
tein obtained by the different methods was assessed by com-
puting the root mean square deviation (RMSD) of the corre-
sponding Cα carbons for the target protein.

Results and discussion

Three pairs of protein structures were selected as examples
to illustrate the degree of difficulty in assessing the optimum
superposition in different cases. First, a pair of glutathione
S-transferases is taken as an example of members of the same
protein family having a rich α-helix topology. Second,
flavodoxin and CheY are taken as an example of proteins
with mixed α-helix/β-strand topology. And third, bean mottle
virus and tumor necrosis factor are taken as examples of pro-
teins of rich β-strand topology.

Figure 2 Convergence of the
superpositions (1,G2), top-
left, and (2,G2), top-right, to
the superposition (1,G5), bot-
tom, for the {1GUH,1GSS}
pair of proteins. The refer-
ence protein, 1GUH, is al-
ways in green, whereas the
target protein, 1GSS, is in
blue, red, and yellow in the
superpositions (1,G2),
(2,G2), and (1,G5), respec-
tively
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Glutathione S-transferase A1-1 (1GUH) and P1-1 (1GSS)

The structure of these two proteins is characterized by two
domains covalently connected. Domain I is an α/β structure
built up of a mixed β-sheet of four strands together with three
α-helices, while domain II is entirely composed by α-heli-
ces. The sequence identity between the two proteins is about
30%. Structural superpositions of these two proteins have been
reported previously.[36,37] However, the difficulty in deriv-
ing relevant structural superpositions for this pair of proteins
is manifested by the fact that it was recently proposed to
superpose the protein-bound ligands for obtaining the pro-
tein-structure superposition instead of using the protein struc-
tures themselves.[37]

The spectra of similarity values for the different struc-
tural superpositions obtained with each Gaussian-based rep-
resentation is shown in Figure 1. The connectivity between
the superposition solutions at the different Gaussian repre-
sentations can also be followed. Superpositions leading to
the consensus superposition at the G10 protein-structure rep-
resentation are given in blue. It is important to stress out that
the superpositions given in red cannot be strictly considered
valid superposition solutions at the sequence level although
they are indeed superposition solutions from a pure shape
point of view. Most of them correspond to local superpositions
of protein substructures. Therefore, for the sake of complete-
ness, they have been also included in Figure 1 to provide an
idea of the discrimination power of the actual similarity scor-
ing to retrieve the “correct” structural superposition(s) among
the best superposition solutions.

There are two evident results that can be immediately
extracted from Figure 1. On one hand, the best structural
superposition at the G1 protein-structure representation con-
sistently converges to the best structural superpositions at G2,
G5, and G10. On the other hand, the best superposition is
clearly discriminated from the lower-ranking solutions ob-
tained within each Gaussian representation. This is an inter-
esting outcome because it reflects the fact that, despite the
low sequence identity between these two proteins, they still

can clearly identify each other at a structural level. Another
aspect to remark from Figure 1 is that the number of
superposition solutions is significantly reduced when going
from a more local Gaussian-based representation, as G1, to a
more global representation, as G10. This is the typical func-
tion-smoothing effect, which compiles several close similar-
ity maxima when using a more local protein-structure repre-
sentation into a single similarity maximum when a more dif-
fuse representation is used. Due to this smoothing effect,
multiple low-ranking solutions at G1, G2, and G5 ultimately
converge to a unique consensus solution at G10 (in blue in
Figure 1).

Although in Figure 1 the best superposition is unique at
G10 and clearly discriminated from the other solutions at
G1, G2, and G5, an alternative superposition solution is re-
vealed at the more local G1 and G2 representations. This
alternative solution finally converges to the best superposition
solution at G5 and G10. The convergence of (1,G2) and (2,G2)
(the two best superpositions in blue at G2 in Figure 1) to
(1,G5) (the best superposition in blue at G5 in Figure 1) is
illustrated in Figure 2. As can be observed, the (1,G2) solu-
tion superposes domains II of the two proteins, causing a
slight misalignment of domains I. In contrast, the (2,G2) so-
lution superposes domains I of the two proteins, resulting in
a poorer fit of domains II where α-helices are not well super-
posed but parallel to each other. The final (1,G5) consensus
superposition provides a balance between the two more local
alternative superpositions (1,G2) and (2,G2). Thus, with re-
spect to (1,G2), the superposition of domains I in (1,G5) is
improved at expenses of a poorer fit of domains II, and vice
versa with respect to (2,G2). The RMSD between the rela-
tive orientations of the target protein (1GSS) with respect to
the reference protein (1GUH) obtained from the (1,G5)
superposition shown in Figure 2 and the final (1,G10)
superposition is 0.1 Å.

Comparison of the Gaussian-based superpositions pre-
sented in Figure 2 with the superpositions obtained by other
programs is given in Table 1. In all cases a Gaussian-based
superposition is found to be close to a superposition obtained

Table 1 RMSD values (in Å) between the relative orienta-
tions of the target protein, 1GSS(A), with respect to the refer-
ence protein, 1GUH(A), obtained from superpositions derived
by different approaches

GAPS (1,G2) GAPS (2,G2) GAPS (1,G5)

GAPS (1,G2) —
GAPS (2,G2) 3.6 —
GAPS (1,G5) 1.5 2.6 —
TOP (1) 0.6 3.2 1.0
TOP (2) 3.0 1.0 1.9
GA_FIT 0.6 3.2 1.0
ALIGN 1.0 2.9 0.6
FSSP 1.1 2.9 0.6

Table 2 RMSD values (in Å) between the relative orienta-
tions of the target protein, 3CHY(A), with respect to the ref-
erence protein, 1RCF(A) obtained from superpositions de-
rived by different approaches

GAPS (1,G2) GAPS (2,G2) GAPS (1,G5)

GAPS (1,G2) —
GAPS (2,G2) 3.8 —
GAPS (1,G5) 2.2 2.8 —
TOP 6.2 5.8 4.6
GA_FIT (1) 1.4 3.6 1.4
GA_FIT (2) 8.1 6.7 6.3
ALIGN 4.7 5.1 4.2
FSSP 2.7 2.2 0.7
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by other means. Interestingly, the TOP program identifies
two alternative superposition solutions similar to the two lo-
cal solutions generated by GAPS at the G2 protein-structure
representation. In contrast, GA_FIT, ALIGN, and FSSP re-
trieve one single superposition. All GA_FIT runs converged
to a superposition in close agreement with the (1,G2) solu-

tion, whereas the ALIGN superposition and the superposition
extracted from the FSSP database are closer to the more dif-
fuse (1,G5) solution. In summary, for the {1GUH,1GSS} pair
of proteins all programs produce a structural superposition
within 1.0 Å RMSD of the proposed consensus optimum
superposition by GAPS.

solutions not leading to the consensus superposition
solutions leading to the consensus superposition

0.01 0.07   Sab(G1)

0.04 0.15   Sab(G2)

0.42 0.59   Sab(G5)

0.81 0.87   Sab(G10)

Figure 3 Connectivity be-
tween the superposition solu-
tions obtained from each
Gaussian-based representa-
tion for the {1RCF,3CHY}
pair of proteins (see text).
Each parallel coordinate rep-
resents the range of similar-
ity values (Sab in eq. (4)) as-
signed to the superposition
solutions obtained from each
Gaussian-based representa-
tion (G1, G2, G5, and G10)
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Flavodoxin (1RCF) and CheY (3CHY)

The overall structure of these two proteins consists of a five-
stranded parallel β-sheet core, flanked by five α-helices. Their
sequence identity is about 15%, which is practically random,
and there is no evidence for their homology. As stated previ-
ously,[29] these two proteins probably represent an example
of structurally convergent evolution, where the same struc-
tural solution was independently reached by two distinct pro-
tein families. The ambiguities in deriving a unique structural
superposition for this pair of proteins have been already rec-
ognized.[30]

For the {1RCF,3CHY} pair of proteins, the spectra of simi-
larity values for the structural superpositions obtained with
each Gaussian-based representation is given in Figure 3. Com-
pared with results obtained above for {1GUH,1GSS}, three

main differences can be underlined (see Figures 1 and 3).
First, in contrast to the behavior observed for the pair
{1GUH,1GSS}, the best structural superposition solutions at
the G1 and G2 levels do not converge to the best solutions at
the G5 and G10 levels for {1RCF,3CHY}. Instead, lower-
ranking solutions at the G1 and G2 levels are the ones ulti-
mately leading to the unique consensus superposition at G10
(in blue in Figure 3). This is a clear example of the ability of
protein-structure similarities using the more local represen-
tations (G1 and G2) to get trapped in local superpositions
where some of the dominant secondary-structure elements
may be perfectly superposed despite a poor overall fit. When
more diffuse protein-structure representations are used (G5
and G10), the global structural superposition is directly iden-
tified as the best superposition solution. Second, note that
the similarity value of the best solution at each Gaussian-

Figure 4 Convergence of the
superpositions (1,G2), top-
left, and (2,G2), top-right, to
the superposition (1,G5), bot-
tom, for the {1RCF,3CHY}
pair of proteins. The refer-
ence protein, 1RCF, is always
in green, whereas the target
protein, 3CHY, is in blue, red,
and yellow in the superposi-
tions (1,G2), (2,G2), and
(1,G5), respectively
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based representation for {1RCF,3CHY} is always smaller than
for {1GUH,1GSS}. This is an indication of the poorer over-
all protein-structure similarity of the {1RCF,3CHY} pair of
proteins with respect to {1GUH,1GSS}. And third, the dis-
crimination between the best superposition and the rest of
low-ranking solutions at the G5 and G10 levels for
{1RCF,3CHY} is not as clear as found previously for

{1GUH,1GSS}. For instance, at the G10 level, the gap be-
tween the similarity score of the best and the second best
structural superpositions is 0.159 and 0.014 for the
{1GUH,1GSS} and {1RCF,3CHY} pairs of proteins, respec-
tively. This reflects the fact that, from a pure shape point of
view, some arrangements of secondary structures in proteins
are more discriminative than others.

solutions not leading to the consensus superposition
solutions leading to the consensus superposition

0.00 0.06   Sab(G1)

0.02 0.14   Sab(G2)

0.23 0.46   Sab(G5)

0.71 0.81   Sab(G10)

Figure 5 Connectivity be-
tween the superposition solu-
tions obtained from each
Gaussian-based representa-
tion for the {1BMV,1TNF}
pair of proteins (see text).
Each parallel coordinate rep-
resents the range of similar-
ity values (Sab in eq. (4)) as-
signed to the superposition
solutions obtained from each
Gaussian-based representa-
tion (G1, G2, G5, and G10)
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In order to inspect the nature of some of the structural
superpositions obtained for the {1RCF,3CHY} pair of pro-
teins visually, the convergence of (1,G2) and (2,G2) (the two
best superpositions in blue at G2 in Figure 3) to (1,G5) (the
best superposition in blue at G5 in Figure 3) is illustrated in
Figure 4. As can be observed, the (1,G2) solution nicely aligns
the β-sheet cores of the two proteins, resulting in a poorer fit
of the pairs of α-helices. In contrast, the (2,G2) solution pro-
vides a better superposition of the α-helices of the two pro-
teins, distorting the fit of the two β-sheet cores. The final
(1,G5) consensus superposition compromises the
superposition of the β-sheet cores (overemphasized in (1,G2)
at the expense of the fit of the α-helices) with the superposition
of the α-helices (overemphasized in (2,G2) at the expense of
the fit of the β-cores). The RMSD between the relative orien-
tation of the target protein (3CHY) with respect to the refer-
ence protein (1RCF) obtained from the (1,G5) superposition
shown in Figure 4 and the final (1,G10) superposition is 0.7 Å.

Comparison of the Gaussian-based superpositions pre-
sented in Figure 4 with the superpositions obtained by other
programs is given in Table 2. Contrary to the situation found
previously for {1GUH,1GSS} where all programs basically
agreed with a similar structural superposition, there is much
more diversity in the superpositions obtained from different
programs when applied to the {1RCF,3CHY} pair of pro-
teins. On the one hand, the GA_FIT program is able to iden-
tify two alternative superposition solutions. However, only
one of them, GA_FIT (1), can be considered close to one of
the superpositions obtained by GAPS. The other superposition
solution, GA_FIT (2), is different from any other alignment
obtained by the other programs and, thus, it is essentially
unique. On the other hand, the superpositions derived with
the TOP and ALIGN programs appear to be more similar to
each other than to the rest of the superpositions produced by
other programs. Finally, a good correspondence is found be-
tween the superposition extracted from the FSSP database
and the GAPS (1,G5) superposition. In summary, for the

Figure 6 Convergence of the
superpositions (1,G5), top-
left, (2,G5), top-center, and
(3,G5), top-right, to the
superposition (1,G10), bot-
tom, for the {1BMV,1TNF}
pair of proteins. The reference
protein, 1BMV, is always in
green, whereas the target pro-
tein, 1TNF, is in blue, red,
white, and yellow in the
superpositions (1,G5),
(2,G5), (3,G5) and (1,G10),
respectively
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{1RCF,3CHY} pair of proteins only the superpositions ob-
tained from GA_FIT and the FSSP database are found within
1.5 Å RMSD of the proposed consensus optimum superpo-
sition by GAPS.

Bean mottle virus (1BMV) and tumor encrosis
factor (1TNF)

These two proteins have in common a ten-stranded β-sheet
topology. It has already been recognized that proteins having
this kind of architecture are likely to permit alternative struc-
tural superpositions.[30] Their sequence identity is about 10%,
which puts them deep into the twilight zone.

The set of similarity values for the structural superpositions
obtained with each Gaussian-based representation is given
in Figure 5. There are two main aspects to note when com-
paring results for the {1BMV,1TNF} pair of proteins (Figure
5) with those obtained above for {1GUH,1GSS} (Figure 1)
and {1RCF,3CHY} (Figure 3). First, a larger number of local
structural superpositions at the G1, G2, and G5 levels of pro-
tein-structure representation finally converge to the consen-
sus optimum superposition at G10 (in blue in Figure 5). Sec-
ond, although the best superposition solutions at the G1, G2,
and G5 representations lead to the consensus optimum
superposition at G10, the latter is not the best solution found.
From a pure shape point of view, it is actually the second
best solution at G10. Note also that the similarity values cor-
responding to the best solution at each Gaussian-based rep-
resentation are the lowest among the three pairs of proteins
studied (compare Figures 1, 3, and 5). Both aspects reveal
the poor discriminative power of this kind of structural archi-
tecture and confirm previously reported ambiguities in de-
riving a unique optimum superposition for this pair of pro-
teins.[30]

The convergence of (1,G5), (2,G5), and (3,G5) (the three
best superpositions in blue at G5 in Figure 5) to (1,G10) (the
best superposition in blue at G10 in Figure 5) is illustrated in
Figure 6. In this case, the difference between the alternative
superpositions found at the G5 level of representation is not
due to the preferential superposition of a type of domain or
structural characteristic (see Figures 2 and 4) but to a shift in
the protein-structure superposition (vide infra). As can be

observed, the two proteins are slightly shifted away (by ap-
proximately two amino acids) when going from (1,G5), to
(2,G5), and to (3,G5). Because GAPS is based on the steric
overlap between protein structures (eq. (3)), the more diffuse
the Gaussian-based representation used, the less accessible
superposition solutions with large non-overlapping regions
become. This is the reason why the most shifted superpositions
at G5, (2,G5) and (3,G5), collapse together with (1,G5) to a
final consensus optimum superposition (1,G10).

Comparison of the Gaussian-based superpositions pre-
sented in Figure 6 with the superpositions obtained by other
programs is given in Table 3. Note that the three GAPS solu-
tions using a G5 representation have consecutively a RMSD
of ca. 6 Å, which reflects the approximate two amino acid
shift mentioned above. The GA_FIT program also produces
three alternative superpositions with a similar 6 Å RMSD
gap between them. Interestingly, each of the GA_FIT
superpositions can be essentially associated with one GAPS
superposition. The TOP program identifies two alternative
superpositions with resemblance to the (1,G10) and (2,G5)
superpositions from GAPS. In summary, all superpositions
produced by the different programs can be clustered in three
general groups: one group composed of the superpositions
GAPS (1,G5), GAPS (1,G10), TOP (1), GA_FIT (1), and
FSSP; a second group formed by the superpositions GAPS
(2,G5), TOP (2), GA_FIT (2), and ALIGN; and a third group
containing the GAPS (3,G5) and GA_FIT (3) superpositions.

Conclusions

The ability of a Gaussian-based approach to protein-struc-
ture similarity, as implemented in the program GAPS, to iden-
tify relevant structural superpositions has been illustrated for
three pairs of proteins with different topological characteris-
tics and very low sequence identities. For the sake of valida-
tion, the superpositions obtained by GAPS were compared
with those produced by other programs (TOP, GA_FIT, and
ALIGN) or directly extracted from a database (FSSP). The
comparative analysis revealed the resemblance between some
of the superpositions generated but also the differences be-
tween the alternative superpositions identified by a variety

GAPS (1,G5) GAPS (2,G5) GAPS (3,G5) GAPS (1,G10)

GAPS (1,G5) —
GAPS (2,G5) 6.2 —
GAPS (3,G5) 11.9 6.4 —
GAPS (1,G10) 1.7 6.0 12.0 —
TOP (1) 3.2 3.5 9.6 2.7
TOP (2) 5.6 2.8 7.1 5.8
GA_FIT (1) 3.8 3.4 9.7 3.3
GA_FIT (2) 6.3 0.5 6.5 6.1
GA_FIT (3) 12.4 6.8 0.7 12.5
ALIGN 5.3 1.6 7.5 5.3
FSSP 3.2 3.8 10.0 2.8

Table 3 RMSD values (in Å)
between the relative orienta-
tions of the target protein,
1TNF(A), with respect to the
reference protein, 1BMV(A),
obtained from superpositions
derived by different ap-
proaches.
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of methods, thus confirming the ambiguities in defining a
unique optimum superposition. The present Gaussian-based
methodology offers a means to, depending on the Gaussian-
based representation used for evaluating protein-structure
similarities, derive a consensus optimum superposition ob-
jectively when alternative superposition solutions exist.

Several advantages can be foreseen in using a Gaussian-
based approach to protein-structure similarity. (i) The gen-
eration of the structural superposition is not biased by the
use of sequence or secondary structure information of the
proteins. This having been said, such an unbiased approach
results in longer computing times. In this particular study,
using a G10 representation with a limited 90-degree rota-
tional step (24 starting orientations) computing times for the
{1GUH,1GSS}, {1RCF,3CHY}, and {1BMV,1TNF} were
210, 67, and 162 seconds, respectively, in an SGI/R10000.
(ii) The degree of locality of the superposition can be tuned
depending on the Gaussian-based representation used to evalu-
ate protein-structure similarities. Alternative solutions can be
found when using more local Gaussian-based representations
but they converge to a consensus superposition solution when
more diffuse Gaussian representations are used. (iii) Because
of the smoothness of a Gaussian-based protein-structure rep-
resentation, the structural superpositions produced are nei-
ther dependent on the resolution nor on the completeness of
the protein structures. And (iv) the methodology is simple
and general. Although the present work has focused on pair-
wise comparisons of rigid protein structures, it can be easily
extended to pairwise flexible superpositions as well as to
optimizing the mutual superposition of multiple proteins.[32]
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